4 research outputs found

    International Mechanical Engineering Congress and Exposition

    Get PDF
    ABSTRACT This paper presents our recent investigation on the impact of 3D haptic-augmented learning tools on Dynamics, which is a basic course in most of the engineering education program. Dynamics is considered to be one of the most difficult and nonintuitive courses that engineering students encounter during their undergraduate study because the course combines basic Newtonian physics and various mathematical concepts such as vector algebra, geometry, trigonometry, and calculus and these were applied to dynamical systems. Recent advances in Virtual Reality and robotics enable the human tactual system to be stimulated in a controlled manner through 3-dimensional (3D) force feedback devices, a.k.a. haptic interfaces. In this study, 3D haptic-augmented learning tools are created and used to complement the course materials in Dynamics course. Experiments are conducted with a group of Mechanical Engineering students in the Dynamics class. The assessment result shows that the innovative learning tools: 1) allow the students to interact with virtual objects with force feedback and better understand the abstract concepts by investigating the dynamics responses; 2) stimulate the students' learning interests in understanding the fundamental physics theories

    Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car

    No full text
    Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehicle. For the first time, in the present work, a preliminary investigation was carried out to generate electricity by utilizing air flow on a moving car. Initially, a correlation between the car speed and wind velocity was established using an anemometer. Placing a set of two micro wind turbines along with two micro generators on the rear end of the car trunk, the present study investigated the feasibility of generating electricity from these micro wind turbines while evaluating the effect of drag force on the performance of the car through the experimental approach and computational fluid dynamics (CFD) simulations. Both approaches confirmed negligible effect of drag force on the vehicle performance in terms of gas mileage and changes in drag coefficient values. Following these studies, the micro wind turbines were also tested for electricity generation at various cruising speeds of the car ranging from 50 to 80 mph on the freeways. The voltage and power generated always showed an increasing trend with increasing the car speed, however they saturated when a cut off limit was setup with the voltage controllers. A maximum voltage of 3.5 V and a maximum current of 0.8 A were generated by each micro wind turbine when a cut off limit was used along with a load consisting of four LED bulbs in parallel with 3.5 V and 0.2 A rating each. On the other hand, when the tests were repeated without using the cut-off limit, a maximum voltage of 18.91 V and a maximum current of 0.65 A were recorded with a load of six flash bulbs in series (flash bulb rating – 4.8 V and 0.5 A each). These studies clearly demonstrate the flexibility to vary the voltage and current outputs from the micro wind turbines indicating a possibility for utilizing the wind energy on the cars at high speeds. Keywords: automobile, renewable energy; wind energy Article History: Received Sept 5th 2016; Received in revised form Dec 6th 2016 ; Accepted January 4th 2017; Available online How to Cite This Article: Bangi, V.K.T., Chaudhary, Y., Guduru, R.K., Aung, K.T and Reddy, G.N. (2017) Preliminary investigation on generation of electricity using micro wind turbines placed on a car. Int. Journal of Renewable Energy Development, 6(1), 75-81. http://dx.doi.org/10.14710/ijred.6.1.75-8

    The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt

    No full text
    corecore